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Abstract

We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream func-
tion form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of
the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so
that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular
current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate
resolution of current sheets with higher-order methods than with piecewise-linear approximations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetohydrodynamics (MHD) is the study of electrically conducting fluids in the presence of a magnetic
field. Fluid motion in a magnetic field induces electric currents which modify the field, and, at the same time,
the flow of electric currents in the magnetic field produces a mechanical force that modifies the fluid motion.
This characteristic two way coupling exhibited by the physical system makes MHD both interesting and dif-
ficult to study. MHD has applications in plasma physics (fusion power generation, astrophysics, etc.) and the
motion of liquid metals.

MHD motion of plasmas tends to develop sharp structures such as nearly discontinuous magnetic fields
and sharply localized, intense current sheets. If the resolution is inadequate, the discretization error can cause
excess numerical dissipation, magnetic reconnection, and/or spurious oscillations. Therefore, it is important to
resolve the solution in the proper areas as the current sheets form and move. To ensure the reliability of the
simulation, mesh refinements must be done adaptively since the location of the current sheets evolve with time.

Various approaches have been used to reduce numerical dissipation in computational MHD. These include
the use of mixed finite difference and spectral discretizations [4] and finite difference schemes with nonuniform,
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.12.010

* Corresponding author.
E-mail address: flahej@rpi.edu (J.E. Flaherty).

mailto:flahej@rpi.edu


364 S. Lankalapalli et al. / Journal of Computational Physics 225 (2007) 363–381
cartesian product grids in which intense current sheets are aligned with the grid [2]. Schnack et al. [3] used a
finite volume method on unstructured adaptive grids to solve problems with axial symmetry. Friedal et al. [5]
used structured adaptive mesh refinement whereas Strauss et al. [1] used a Galerkin finite element method with
unstructured adaptive meshes to resolve current sheets in ideal incompressible MHD flows in two dimensions.
Strauss et al. [1] used a mesh criterion based on a threshold value for the product of the current density and
element area. In order to avoid unnecessary mesh refinement in regions far from the current sheets, the refine-
ment criterion was weighted in terms of the magnetic separatrix. Recently, Jardin [6] used a reduced quintic
triangular finite element with C1 continuity to solve two dimensional, incompressible, resistive MHD equa-
tions with no adaptivity.

We develop an adaptive finite element solution procedure on unstructured meshes for incompressible MHD
flow problems in streamfunction-vorticity form. The procedure uses a stabilized finite element formulation
and adaptive h-refinement based on a posteriori temporal and spatial error estimates of the magnetic field.
Spatial error estimates based on recovery (the difference between post-processed smoothed finite element solu-
tion and the finite element solution) and order extrapolation (the difference between finite element solutions of
different polynomial orders) are used to guide mesh adaptivity. Temporal estimates of local discretization
errors are obtained from order extrapolation between solutions obtained by backward Euler and trapezoidal
rule methods. We use a method-of-lines approach that is designed to maintain (local) time error estimates at a
small fraction of the (global) spatial error estimate [7]. The procedure is applied to resolve the singular current
sheets that form in the tilt instability [1,26] problem of ideal MHD. By using higher-order extrapolation error
estimates, we demonstrate the benefits of using higher-order finite element methods in terms of solution accu-
racy per unit of computational cost.

In Section 2, we describe the incompressible MHD equations. In Section 3, we outline the stabilized
finite element formulation. This is followed by the spatial and time discretization procedure in Section 4. In
Section 5, we describe the error estimation and adaptivity procedures. In Section 6, we describe the tilt insta-
bility problem and present numerical results. Finally, we summarize our findings and present conclusions in
Section 7.

2. Incompressible MHD equations

The incompressible MHD equations consist of the Navier–Stokes equations [17] coupled to Maxwell equa-
tions [19] and consist of
ov

ot
¼ �ðv � rÞvþ 1

q
ðr � BÞ � B þ lr2v; ð2:1Þ

r � v ¼ 0; ð2:2Þ
oB

ot
¼ r� ðv� BÞ; ð2:3Þ

r � B ¼ 0; ð2:4Þ
where v is the velocity, q = q0 is the (constant) density, assumed constant, B is the magnetic field and l is the
fluid viscosity. Eq. (2.3) is obtained from Faraday’s law after using Ohm’s law to write the electric field in
terms of the magnetic field [19]. Eq. (2.1) is the Navier–Stokes equation with a Lorentz force as the body force.
Eqs. (2.2) and (2.4) express the incompressibility condition on the velocity and magnetic fields, respectively.
The above equations model the case of ideal MHD since the resistivity term in Ohm’s law is neglected.

The equations can be made dimensionless, by normalizing B to a reference magnetic field strength B0, q to
q0, v to the Alfven velocity vA ¼ B0=

ffiffiffi
q
p

0
, length to l, and time to the Alfven time, l/vA. To enforce the incom-

pressibility conditions on the velocity and magnetic fields, we introduce the stream functions
v ¼ o/
oy
;� o/

ox

� �
; ð2:5Þ

B ¼ ow
oy
;� ow

ox

� �
; ð2:6Þ
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where / and w are the velocity flux and magnetic flux, respectively. Substituting Eqs. (2.5) and (2.6) into Eqs.
(2.3) and (2.4) and following the symmetrization procedure of Strauss et al. [1], we obtain the following stream
function formulation:
oX
ot
þ ½X;/� ¼ ½C;w� þ lr2X; ð2:7Þ

oC
ot
þ ½C;/� ¼ ½X;w� þ 2

o/
ox
;
ow
ox

� �
þ 2

o/
oy
;
ow
oy

� �
; ð2:8Þ

r2/ ¼ X; ð2:9Þ
r2w ¼ C; ð2:10Þ
where X is the vorticity, C is the current density and
½a; b� ¼ oa
ox

ob
oy
� oa

oy
ob
ox
is the Poisson bracket. The equations are symmetric in the sense that the source functions C and X are time
advanced, and fluxes / and X are obtained at each time step by solving Poisson problems.

3. Stabilized finite element formulation

Eqs. (2.7)–(2.10) provide a formidable coupled and nonlinear system. In addition, Eqs. (2.7) and (2.8) intro-
duce advection into the problem, since gradients of / in the Poisson brackets provide advective velocities for X
and C in (2.7) and (2.8), respectively.

It is well known that standard Galerkin finite element methods fail for advection and advection dominated
advection-diffusion problems [8,10,11]. Spurious oscillations occur when solutions in layers are not adequately
resolved. Several remedies that suppress the oscillations by adding diffusion have been proposed. The methods
may be classified into quadrature based methods [12,11] and Galerkin least squares stabilization methods
[13,15]. The Galerkin least-squares method consists of adding diffusion in a least-squares form of the residual
to the Galerkin method. Quadrature based methods add diffusion by using specialized quadrature rules when
evaluating element contributions.

We use the Streamline Upwind Petrov–Galerkin (SUPG) stabilized finite element method which was first
proposed by Hughes et al. [8,9] to solve Eqs. (2.7) and (2.8). The SUPG method is a special case of the Galer-
kin least-squares method with the stabilization terms consisting of only the advective operator multiplying the
residual of the strong form of the problem. To begin, we construct a Galerkin form of Eqs. (2.7)–(2.10) by
multiplying each by test functions wi, i ¼ 1; 2; 3; 4, integrating over the domain R, and integrating the diffusive
terms by parts to obtain
B1ðX;w1Þ �
oX
ot
þ ½X;/� � ½C;w�;w1

� �
þ lðrX;rw1Þ ¼ 0; ð3:1Þ

B2ðC;w2Þ �
oC
ot
;w2

� �
þ ½C;/� � ½X;w� � 2

o/
ox
;
ow
ox

� �
� 2

o/
oy
;
ow
oy

� �
;w2

� �
¼ 0; ð3:2Þ

� ðr/;rw3Þ ¼ ðX;w3Þ; ð3:3Þ
� ðrw;rw4Þ ¼ ðC;w4Þ; ð3:4Þ
where
ðu;wÞ ¼
Z
R

uvdV
and homogeneous Dirichlet boundary conditions were assumed for simplicity.
The SUPG stabilized weak form of the problem is obtained by replacing Eqs. (3.1) and (3.2) by
B1ðX;w1Þ þ
X

T2Th

oX
ot
þ ½X;/� � ½C;w� � lr2X; s½w1;/�

� �
¼ 0; ð3:5Þ
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B2ðC;w2Þ þ
X

T2Th
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ot
þ ½C;/� � ½X;w� � 2
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ox
;
ow
ox
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oy
;
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oy

� �
; s½w2;/�

� �
¼ 0; ð3:6Þ
where Th is a partition of the domain into a mesh of non-overlapping elements. The stabilization terms are an
element-level inner product of the residual of the strong form of the equation and the advective portion of the
operator acting on the test function weighted by a stabilization parameter s. Several definitions of the stabil-
ization parameter s have been proposed and we use one suggested by Tezduyar et al. [14]
s ¼ 1

s2
1

þ 1

s2
2

� ��1
2

; s1 ¼
he

2jaj maxðPe; 1Þ; s2 ¼
Dt
2
; ð3:7Þ

Pe ¼ mkjajhe

2l
; mk ¼ min

1

3
; 2Ck

� �
; ð3:8Þ
where s1 is a parameter for the advection dominated case [15] and s2 is a parameter for transient dominated
case defined in terms of the time step Dt. Additionally, Pe is the cell Peclet number, he represents a suitably
chosen element diameter (maximum edge length in our implementation),
a ¼ o/
ox

o/
oy

� �T

ð3:9Þ
is the advective velocity and Ck is a constant that depends on the polynomial degree of the basis and represents
a modification of s1. The existence of such a constant follows from inverse estimates [16] and Harari et al. [20]
provide some guidance on how to choose it as a function of polynomial degree. In our numerical simulations,
we simply choose mk = 1/3.

The addition of stabilization terms to Eqs. (3.1) and (3.2) is equivalent to using discontinuous Petrov–
Galerkin weighting functions w01 and w02 that perturb the Galerkin weight functions by
w01 ¼ ðw1 þ p1Þ; w02 ¼ ðw2 þ p2Þ; ð3:10Þ

where p1 ¼ s½w1;/� and p2 ¼ s½w2;/� are the perturbations. With this, the weak form of the system of equa-
tions with SUPG stabilization may be concisely written as
oX
ot
þ ½X;/� � ½C;w�;w01

� �
þ lðrX;rw1Þ � lðr2X; p1Þ ¼ 0; ð3:11Þ

oC
ot
;w02

� �
þ ½C;/� � ½X;w� � 2

o/
ox
;
ow
ox

� �
� 2

o/
oy
;
ow
oy

� �
;w02

� �
¼ 0; ð3:12Þ

� ðr/;rw3Þ ¼ ðX;w3Þ; ð3:13Þ
� ðrw;rw4Þ ¼ ðC;w4Þ: ð3:14Þ
4. Discretization

For the spatial discretization, we partition the problem domain R into a mesh of non-overlapping elements
Th, and define basis functions kiðxÞ, i ¼ 1; 2; . . . ;N , where x is a vector of spatial coordinates and N is the
dimension of the approximating space. We use a Lagrange basis [18] on a two-dimensional mesh of triangular
elements. We obtain a finite element version of Eqs. (3.11)–(3.14) by approximating the MHD variables /, X,
w and C as linear combinations of the basis functions as
X

C

/

w

2
6664

3
7775ðx; tÞ ¼

XN

j¼1

Xj

Cj

/j

wj

2
6664

3
7775ðtÞkjðxÞ: ð4:1Þ
Substituting Eq. (4.1) into Eqs. (3.11)–(3.14), testing with each of the basis functions ki, i = 1, 2, . . . ,N, and
integrating over the mesh Th results in the following algebraic system:
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M � oX
ot
� P : UX� P : CWþ lS �X ¼ 0; ð4:2Þ

M � oC

ot
þ P : CU� P : XW� 2ðQ : UWÞ � 2ðR : UWÞ ¼ 0; ð4:3Þ

S �U ¼M �X; ð4:4Þ
S �W ¼M � C; ð4:5Þ
where X, C, U and W are vectors of Galerkin coefficients, M is the mass matrix, S is the stiffness matrix, P, Q

and R are discrete Poisson bracket tensors. Additionally,
ðM � CÞi ¼
XN

j¼1

MijCj; ð4:6Þ

ðP : UXÞi ¼
XN

j;k¼1

P ijk/jXk; ð4:7Þ

ðQ : UWÞi ¼
XN

j;k¼1

Qijk/jwk; ð4:8Þ

ðR : U;WÞi ¼
XN

j;k¼1

Rijk/jwk; ð4:9Þ
where
Mij ¼
Z
Th

ðki þ s½ki;/�Þkj dV ; ð4:10Þ

Sij ¼
Z
Th

ðrkirkj � s½ki;/�DkjÞdV ; ð4:11Þ

P ijk ¼
Z
Th

ðki þ s½ki;/�Þ½kj; kk�dV ; ð4:12Þ

Qijk ¼
Z
Th

ðki þ s½ki;/�Þ½kj;x; kk;x�dV ; ð4:13Þ

Rijk ¼
Z
Th

ðki þ s½ki;/�Þ½kj;y ; kk;y �dV : ð4:14Þ
The second derivatives of basis functions in the Poisson brackets are computed in our implementation by
differentiating the piecewise continuous global projection of the derivatives of the basis functions.

The semi-discrete Eqs. (4.2)–(4.5) are linearized and decoupled by retarding variables as follows:
M � oXkþ1

ot
� P : UkXkþ1 � P : CkWk þ lS �Xkþ1 ¼ 0; ð4:15Þ

M � oCkþ1

ot
þ P : Ckþ1Uk � P : Xkþ1Wk � 2ðQ : UkWkÞ � 2ðR : UkWkÞ ¼ 0; ð4:16Þ

S �Ukþ1 ¼M �Xkþ1; ð4:17Þ
S �Wkþ1 ¼M � Ckþ1; k ¼ 0; 1; . . . ; ð4:18Þ
where the superscript k indicates an iteration index. We use the backward Euler method to discretize Eqs.
(4.15) and (4.16) in time to get
M �Xkþ1
nþ1 ¼M �Xn þ DtFðXkþ1

nþ1;C
k
nþ1;U

k
nþ1;W

k
nþ1Þ; ð4:19Þ

M � Ckþ1
nþ1 ¼M � Cn þ DtGðXkþ1

nþ1;C
kþ1
nþ1;U

k
nþ1;W

k
nþ1Þ; ð4:20Þ

S �Ukþ1
nþ1 ¼M �Xkþ1

nþ1; ð4:21Þ
S �Wkþ1

nþ1 ¼M � Ckþ1
nþ1; ð4:22Þ
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where,
FðX;C;U;WÞ ¼ P : UXþ P : CW� lS �X; ð4:23Þ
GðX;C;U;WÞ ¼ �P : CUþ P : XWþ 2ðQ : UWÞ þ 2ðR : UWÞ; ð4:24Þ
the subscript n represents time. For each time step, we solve Eqs. (4.19)–(4.22) in sequence and repeat the iter-
ation for five times before checking for convergence with a tolerance of 1.0e � 4. A preconditioned gmres iter-
ative solver was used to solve the system of equations. If there is no convergence, we halve the time step and
restart the procedure.

We compute a second solution by repeating the above procedure, using trapezoidal rule integration for the
time discretization of Eqs. (4.15) and (4.16) to get
M �Xkþ1
nþ1 ¼M �Xn þ

Dt
2

FðXk
nþ1;C

k
nþ1;U

k
nþ1;W

k
nþ1Þ þ FðXn;Cn;Un;WnÞ

� �
; ð4:25Þ

M � Ckþ1
nþ1 ¼M � Cn þ

Dt
2

GðXkþ1
nþ1;C

k
nþ1;U

k
nþ1;W

k
nþ1Þ þGðXn;Cn;Un;WnÞ

� �
; ð4:26Þ

S �Ukþ1
nþ1 ¼M �Xkþ1

nþ1; ð4:27Þ
S �Wkþ1

nþ1 ¼M � Ckþ1
nþ1: ð4:28Þ
We use the Euler solution for X0
nþ1, C0

nþ1, U0
nþ1, W0

nþ1 and solve Eqs. (4.25) and (4.26) in sequence for a fixed
number of iterations. The computed trapezoidal solution is of higher order and is used to estimate the time
discretization error as described in Section 5.1.

5. Error estimation and adaptivity

We use a posteriori estimates of the spatial and temporal discretization errors to guide mesh adaptivity in
space and step size selection in time. We use a method-of-lines approach that is designed to maintain (local)
time errors at a small fraction of the (global) spatial error estimate. At the end of every time step, we adapt the
mesh based on the computed spatial error estimates and a specified global spatial error tolerance gtol.

Spatial error estimate on the magnetic field is used since the developed method is applied to resolve current
sheets in Section 6. Since the current sheets form at the intersection of oppositely directed magnetic field lines,
accurate resolution of the magnetic field is expected to result in better resolution of current sheets. In the lit-
erature, other criteria have been used to trigger adaptivity for the current sheet problem. These include a cri-
terion based on current density and element area by Strauss et al. [1] and another based on the global
maximum of current density and vorticity by Friedal et al. [5].

5.1. Temporal error estimate

An estimate of the local discretization error is obtained using order extrapolation between solutions
obtained by backward Euler and trapezoidal rule integration. In order to describe the procedure, let U(tn)
be the solution of the spatially-discrete finite element Eqs. (4.2)–(4.5) with exact time integration on
½tn�1; tn�. Let U 1ðtnÞ and U 2ðtnÞ be the backward Euler and trapezoidal rule solutions, respectively. Then,
the local time discretization error etðtnÞ of the backward Euler solution can be bounded as
etðtnÞ ¼ UðtnÞ � U 1ðtnÞ ¼ ½UðtnÞ � U 2ðtnÞ� þ ½U 2ðtnÞ � U 1ðtnÞ�: ð5:1Þ

Since the leading term on the right is OðDt3

nÞ and the second is OðDt2
nÞ, we have
etðtnÞ ¼ ½U 2ðtnÞ � U 1ðtnÞ� þOðDt3
nÞ; ð5:2Þ
where Dtn is the time step. This estimate of the local error can be used to adjust future time steps to maintain
the local error at a small fraction of the total discretization error tolerance gtol. The local error satisfies
etðtnÞ ¼ CnDt2
n þOðDt3

nÞ; ð5:3Þ

where Cn is proportional to a second time derivative of the solution. Using the leading terms of Eqs. (5.2) and
(5.3), we find the approximation



S. Lankalapalli et al. / Journal of Computational Physics 225 (2007) 363–381 369
Cn �
U 2ðtnÞ � U 1ðtnÞ

Dt2
n

: ð5:4Þ
The next time step Dtnþ1 should satisfy
agtol ¼ Cnþ1Dt2
nþ1 ð5:5Þ
assuming that the solution remains smooth Cnþ1 ¼ Cn þOðDtnþ1Þ or, to leading order, Cnþ1 � Cn. Thus, using
Eq. (5.4) we find the recommended time step as
Dtnþ1 ¼
agtolðDtnÞ2

jU 2 � U 1j

" #1
2

: ð5:6Þ
5.2. Spatial error estimates

We obtain estimates of the spatial error by using the relatively standard a posteriori error estimation tech-
niques [21,22] of recovery and extrapolation. In recovery-based error estimation, a smoothed flux is computed
by post processing the finite element solution and an error estimate is obtained from the difference between the
smoothed and original fluxes. This method was proposed by Zienkiewicz and Zhu [23] (commonly referred to
as Z2 estimator) in the context of linear elliptic problems. To define the error estimate, as before, let U 1ðtnÞ be
the backward Euler solution and let rðU 1ðtnÞÞ be the computed flux on which an error estimate is to be
obtained. Then, the error estimate on a element T 2Th, gZ

T, is given by
gZ
T ¼ rTðU 1ðtnÞÞ � r�TðU 1ðtnÞÞ; ð5:7Þ
where r�TðU 1ðtnÞÞ is the flux recovered using the superconvergent patch recovery procedure outlined in [23].
An extrapolation error estimate is obtained by taking the difference between the fluxes computed from finite

element solutions obtained with different meshes (h-refinement) or different orders (p-refinement). We use
p-refinement where the error estimate on an element T, denoted by gp

T, is obtained as
gp
T ¼ rpþ1

T ðU 2ðtnÞÞ � rp
TðU 2ðtnÞÞ; ð5:8Þ
where, rpþ1
T ðU 2ðtnÞÞ and rp

TðU 2ðtnÞÞ are the fluxes computed from trapezoidal solutions at time tn with spatial
order approximations p + 1 and p, respectively.

The Z2 estimator is simple to implement and has the additional advantage of having low computational
cost. On the other hand, the extrapolation error estimator is computationally expensive due to the necessity
of computating two solutions. The computational cost may be reduced by using a hierarchical embedded
scheme where computations needed for the lower order method are also needed for the higher order method
and, hence, need not be repeated. An advantage of p-refinement that is used herein is higher-order solutions
are readily available. In our computations, we propagate the higher-order solution by local extrapolation [24]
at every time step.

5.3. Mesh adaptivity and solution transfer

After every time step, based on the computed spatial error estimates and a specified global error tolerance
gtol we use a mesh optimization procedure [25] to compute the size of elements in the new mesh. The procedure
consists of computing a size multiplication factor ri for element i = 1, 2, . . . ,Nel by solving a minimization
problem to determine the optimal number of elements to meet a permitted error norm kek. The element size
is specified by its maximum edge length. First, keðtnÞk is determined from gtol as
kek ¼ gtoljjU 1ðtnÞjj: ð5:9Þ

Then, the new element size hnew½i� is obtained in terms of the old element size hold½i� by
hnew½i� ¼ ri � hold½i�; ð5:10Þ
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where
ri ¼
g
�2p

2pþd
i kek

1=p

PN el

i¼1g
2d

2pþd
i

� � 1
2p

; ð5:11Þ
gi is the error estimate for the element i, Nel is the total number of elements, p is the polynomial order of the
solution and d is the dimension of the problem.

The mesh is adapted using the mesh modification procedures developed by Li et al. [28,29]. This requires
the specification of a mesh metric field to define the desired element size and shape distribution from the com-
puted hnew½i�, i = 1, 2, . . . ,Nel. The mesh is then adapted to satisfy the prescribed metric field by the processes of
refinement, coarsening and re-alignment.

After mesh adaptation, the finite element solution is transferred to the new mesh from the old mesh by solv-
ing the L2 projection
ðU 1
newðtnÞ;wÞ ¼ ðU 1ðtnÞ;wÞ; ð5:12Þ
B

Fig. 1. Tilt instability: initial magnetic field.

X

Y

O

(3, 3)

(3, –3)(–3, –3)

(–3, 3)

Ns

Fig. 2. Uniform mesh of N s � N s squares split into triangles.
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where U 1
newðtnÞ is the solution on the new mesh and w is a weight function. The solution transfer operation is

done locally and only in regions where the mesh has been modified.

6. Tilt instability

The tilt instability problem has been studied by Strauss et al. [1] for the incompressible case and by Richard
et al. [26] for the compressible case. The initial equilibrium consists of two oppositely directed currents embed-
ded in a constant magnetic field. As a result, there are two adjacent sets of closed magnetic field line loops
(Fig. 1) or vortices associated with the currents. The corresponding initial magnetic flux w0 in polar (r,h) coor-
dinates is given by
Fig. 3.
Magne
w0 ¼
cJ 1ðkrÞ cos h; if r < 1;

ðr � 1=rÞ cos h; if r P 1;

	
ð6:1Þ
Magnetic flux (top), velocity field (center) and vorticity (bottom) on a uniform mesh of 32,768 triangles with p = 1 at t = 0, 5, 6.6.
tic flux (w): (a) t = 0, (b) t = 5.0, (c) t = 6.6. Velocity (v): (d) t = 0, (e) t = 5.0, (f) t = 6.6. Vorticity (X): (g) t = 0, (h) t = 5.0, (i) t = 6.6.
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where c ¼ 2=ðkJ 0ðkÞÞ, J0 and J1 are Bessel functions of the first kind of order zero and one, respectively, and k

is the first root of J1.
The antiparallel currents repel each other and are prevented from being expelled by the surrounding mag-

netic field. The resulting initial equilibrium is unstable. When perturbed, the magnetic vortices turn, align hor-
izontally and get expelled from the region. As the vortices align horizontally, intense current gradients (known
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Fig. 5. Peak current density as a function of time on a mesh of 32,768 triangles with p = 1.

Fig. 4. Magnetic field (top) and current density (bottom) on a uniform mesh of 32,768 triangles with p = 1 at t = 0, 5, 6.6. Magnetic field
(B): (a) t = 0, (b) t = 5.0, (c) t = 6.6. Current density (C): (d) t = 0, (e) t = 5.0, (f) t = 6.6.
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as current sheets) form at the leading edges of the vortices. Additionally, the kinetic energy grows like ec t for
some rate c.

We used the adaptive methods described in Section 5 to simulate the tilt instability. The software was imple-
mented in Trellis [27], an object oriented framework. Trellis provides various tools to specify the weak form of
the problem, perform time integration, error estimation and mesh adaptivity. All simulations were done on a
square 6 · 6 domain that is discretized into a mesh of triangular elements. Initial conditions are
Xðx; y; 0Þ ¼ r2/0;

Cðx; y; 0Þ ¼ r2w0;
ð6:2Þ
where the perturbed initial velocity flux,
/0ðx; y; 0Þ ¼ �e�ðx
2þy2Þ; ð6:3Þ
with � being the perturbation magnitude. Boundary conditions are
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Fig. 6. Estimation of growth rate of kinetic energy by a least squares fit.
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Xðx; y; tÞ ¼ /ðx; y; tÞ ¼ 0;

wðx; y; tÞ ¼ w0:
ð6:4Þ
A viscosity of l = 0.005 was used in all simulations.

6.1. Non-adaptive computation

We first present results of a simulation with polynomial degree p = 1 on a fixed mesh of 32,768 triangles of
the type shown in Fig. 2 with Ns = 128. The initial perturbation magnitude is � ¼ 1:0e�4. The magnetic flux,
shown in Fig. 3 indicate that the vortices distort as they turn and line up. The velocity and vorticity, also
shown in Fig. 3, indicate that the motion of the instability is a combination of rotation of the vortices about
the origin and displacement of vortices relative to each other. As the vortices turn, oppositely directed mag-
netic field lines intersect at the leading edges of the vortices. This phenomenon is known as magnetic recon-
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Fig. 9. Growth rates with h- and p-refinement for � ¼ 1:0e�4.
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nection and is not permitted in ideal MHD. It occurs due to insufficient spatial resolution. A consequence of
this is the poor resolution of current sheets as shown in the lower right of Fig. 4. This is also reflected in the
value of peak current density (56) when the two vortices line up horizontally (see Fig. 5). The peak current is
Fig. 11. Meshes at t = 0 and t = 7.3 when using Z2 error estimator with gtol ¼ 0:01 and p = 1. (a) Initial mesh of 29,526 triangles.
(b) Adapted mesh of 37,981 triangles at t = 7.3.
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Fig. 10. Current density (top) and current sheets (bottom) when using the Z2 error estimator with gtol ¼ 0:01 and p = 1. Current (C):
(a) t = 0.0, (b) t = 6.0, (c) t = 7.3. (d) and (e) Current sheets.
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only about five times its initial value whereas nearly singular values are expected in the case of ideal MHD.
Better resolution of the current sheets would result in a much higher peak current density.

Better resolution of the current sheets can be done by adaptive procedures that automatically refine the
mesh in order to control the discretization errors.

6.2. Growth rates

Like the current sheets, another quantity of interest is the linear growth rate of the instability. The linear
growth rate c is the slope of the linear portion of the logarithm of the kinetic energy as a function of time. The
slope is determined by a least squares fit of a linear polynomial as shown in Fig. 6. A growth rate of c = 1.3455
was obtained for the simulation of Section 6.1.

We did a systematic study of the effect of uniform h- and p-refinement on growth rates. For the h-refinement
study, uniform meshes of the type shown in Fig. 2 with Ns = 16, 23, 32, 45, 64, 90, 128 and 181 were used. For
the p-refinement study, polynomial degrees p = 1–4 were used on a mesh with Ns = 23. Figs. 7–9 show the
growth rates as a function of the logarithm of the number of degrees of freedom obtained with h- and p-refine-
ment for different magnitudes of the initial perturbation �. The number of degrees of freedom for only the
magnetic variable have been used. We notice a slight dependence of the growth rate on the magnitude of
the initial perturbation, but, in all cases, there is a more rapid convergence of growth rates with p-refinement
than with h-refinement. However, we note a slight difference in converged values from h- and p-refinement par-
ticularly for the case with � = 1.0e�4. This may be attributed to low order methods failing to converge in some
cases. In general, there is a clear advantage of the higher-order methods with respect to growth rate compu-
tation both in terms of accuracy and efficiency.
Fig. 12. Current density (top) and adapted meshes at t = 0 and t = 8.5 using the order extrapolation estimate with gtol ¼ 0:02 and p = 1.
(a) Current density. (b) Current sheets. (c) Initial mesh of 1843 triangles. (d) Adapted mesh of 56,009 triangles at t = 7.7.
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6.3. Adaptive computation

Adaptive solutions were obtained using the error estimation and mesh adaptivity procedures described in
Section 5. A posteriori spatial error estimates of the magnetic field was used to adapt the mesh at the end of
every time step. The corresponding flux function is
Fig. 13
(a) Cu
rðwhðtnÞÞ ¼
owhðtnÞ

oy
;� owhðtnÞ

ox

� �
:

The justification for using this flux function is that the current sheets form at the intersection of oppositely
directed magnetic field lines. Better resolution of the magnetic field will result in better resolution of current
sheets.

The time step for integration was chosen such that the local temporal discretization error in the magnetic
flux (w) was one-tenth (a = 0.1) in Eq. (5.6) of the global spatial discretization error. Temporal discretization
errors in all the other variables were ignored. All the simulations were started with an initial timestep of
0.0025. The timestep during the simulations was observed to vary within an order of magnitude of the initial
timestep. The global spatial error tolerance gtol is a problem dependent parameter and, as such, is difficult to
determine. We used numerical experimentation to arrive at an appropriate value. The adaptive simulations
were done on unstructured triangular meshes and the initial mesh was adapted to the spatial discretization
error in the initial magnetic field. We will mainly compare results from adaptive simulations in terms of res-
olution of the current sheets when the magnetic vortices line up horizontally.
. Current density (top) and adapted meshes at t = 0 and t = 6.3 using order extrapolation estimate with gtol ¼ 0:005 and p = 2.
rrent density. (b) Current sheets. (c) Initial mesh of 1843 triangles. (d) Adapted mesh of 6035 triangles at t = 6.3.
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Fig. 10 shows results obtained using the Z2 estimator with gtol ¼ 0:01. Close up views of the current
(Fig. 10(d) and (e)) indicate that the current sheets have been resolved. Some meshes are shown in Fig. 11.
The growth rate of the kinetic energy was c = 1.3344.

Fig. 12 shows results obtained using the order extrapolation error estimate with gtol ¼ 0:02. The current
sheets in Fig. 12(d) are much better resolved than those obtained using the Z2 estimator in Fig. 10. In this case,
the final adapted mesh had 56,009 elements and the growth rate was c = 1.3027. Since, we propagate the
higher-order solution when using extrapolation error estimates, the solution obtained using the order extrap-
olation is of spatial order two.

Fig. 13 shows results obtained using order extrapolation estimator with p = 2 and gtol ¼ 0:005. The prop-
agated solution has degree three and the adapted mesh has 6035 elements. The current sheets are better
resolved when compared to the degree one solution in Fig. 10. The growth rate of the kinetic energy was found
to be c = 1.3357. Both the higher-order solutions give better resolution of current sheets when compared to the
linear solution, thus, demonstrating a benefit of higher-order methods.

Current sheets from additional adaptive computations using different error estimates and error tolerances
are shown in Fig. 14. In general, for a given error tolerance, p = 2 solution is better resolved than the p = 1
solution. To see this, compare the current sheets obtained with gtol ¼ 0:01 in Fig. 10(e) (p = 1) and Fig. 12(b)
(p = 2). However, a p = 3 solution of comparable resolution requires specification of a much lower tolerance
(see Fig. 13(b) with gtol ¼ 0:005).
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In Figs. 15–17, we compare the peak current densities, number of elements and total energies from various
adaptive computations with a standard (non-adaptive) computation. As anticipated, adaptive computations
result in higher values of peak current densities. Peak current densities obtained from adapted p = 1 solutions
are significantly higher than those from adapted higher order solutions. Additionally, the peak current density
from an order 3 adaptive simulation is higher than that from a order 2 solution. However, higher peak current
density do not necessarily correspond to better resolution of current sheets. To see this, compare the current
sheets obtained using higher-order method (Figs. 12 and 13) with those obtained with p = 1 (Fig. 10).

The Figs. 15–17 also indicate that the time at which the current densities begin their exponential growth
varies for different simulations. The exponential growth starts to occur after the two vortices have turned from
their initial horizontal position somewhere inbetween the horizontal and vertical position. All our numerical
experiments indicated a sensitive dependence of the instability to initial conditions. Slightly different initial
conditions brought about by the mapping of the initial magnetic field onto the mesh with different orders
resulted in the instability turning at different times. However, once the current sheets begin to form, our adap-
tive procedure works as anticipated.
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Fig. 16 shows that the growth in the number of elements used for a computation keeps pace with the expo-
nential growth of peak current density. The total energy plots in Fig. 10 show that the energy is conserved
better (less than 2% loss) for the all the adaptive simulations. The unadapted simulation shows a greater loss
of energy due to numerical reconnection.

Finally, Strauss et al. [1] obtained c ¼ 1:2 in adaptive simulations with linear elements and Richard et al.
[26] obtained a growth rates in the range of 1:3 < c < 1:4, depending on pressure for compressible MHD with
resistivity. We obtained growth rates in the range of 1:25 < c < 1:34 in our simulations.

7. Summary and conclusions

We describe an adaptive finite element procedure for solving incompressible magnetohydrodynamic flow
problems in stream function-vorticity form. The procedure uses a stabilized finite element formulation and
adaptive h-refinement based on a posteriori temporal and spatial error estimates of the magnetic field. The
methods were applied to study a tilt instability under ideal magnetohydrodynamics conditions. A systematic
study of the linear growth rate of the tilt instability with respect to h- and p-refinement was conducted and
results were obtained using different spatial error estimators. Our results indicate that higher-order methods
provide higher solution accuracy per unit computation for growth rates. In addition, they provide for better
resolution of current sheets.

In this work, we applied relatively standard a posteriori error estimation techniques to adaptively solve
equations that model single fluid ideal magnetohydrodynamics. Work is underway to develop better error esti-
mation techniques and extend them to adaptively solve two-fluid models of magnetohydrodynamics.
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